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ABSTRACT

The solution is obtained for the reflection and transmission of time

harmonic plane dilatational or shear waves at a plane interface between two

linearly viscoelastic materials. Except in special cases, the reflected and

transmitted waves are general plane waves, i.e., plane waves whose amplitudes

vary across their wave fronts , The angles of reflection and transmission

depend on the incident angle in a more complicated way than in the limiting

elastic case because the wave speeds of the reflected and transmitted waves

are, in general, functions of the incident angle. Necessary and sufficient

conditions for the existence of interface waves are obtained. It is found

that no interface waves can exist for some materials. For another class

of materials, interface waves exist for discrete angles of incidence. For

still other materials, interface waves exist for all incident angles greater

than some critical angle .
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INTRODUCT ION

This paper treats the reflection and transmission of a time harmonic

plane dilatational or shear wave by a plane interface , y — 0, between two

homogeneous and isotropic linearly viscoelastic materials as indicated by

Figure 1. The method of solution i~ the same as the procedure used in

solving the elastic problem by use of potential functions except that it

leads to the definition of complex reflection and transmission angles.

Further analysis of the formal solution to obtain the real reflection and

transmission angles leads to the definition of general plane waves, i.e.,

plane waves whose amplitudes vary across their wave fronts. This result

is consistent with previous work
1 dealing with the reflec tion of plane waves

from p lane rigid and free boundaries where such waves were defined initially

so that no complex angles would enter into the analysis. That procedure

could also be applied to the interface problem ; however, the method given

here leads more directly to a formal representation of the solution.

The problems treated here and in Reference 1 have been considered by

Lockett2 by using a method which ia different than either of the approaches

mentioned above. Our results agree in general with his, except that we

present a bit more detailed analysis of the reflection and refraction phenomena

and obtain a few more explicit result.. In particular , we obtain necessary

and sufficient conditions for the existence of interface waves and find that,

in general, such waves can exist only for distinct incident angles, a result

which apparently was not recognized from his analysis. We also obtain

explicit relationships for the transmitted and reflected wave speed. and

attenuation coefficients.
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As migh t be expected from the previous work , the phase velocities of

the reflected and transmitted waves are functions of the incident angle

as well as material properties , and the real rex ~ t~ction and transmission

angles depend on the incident angle in a more complicated way than in

the elastic case. Also, as indicated above, interface waves are generally

possible only for discrete incident angles; whereas, in the elastic case

or in a special viscoelastic case, they are possible for a range of

incident angles. In the elastic case this phenomena is referred to as

total reflection or refraction3. In general, a phase shift between

the incident and the reflected or refracted waves is introduced by the

interface.

In Section I, the problem I. formulated and, in Sec tion II the

formal solution, for either an incident dilatational or shear wave, is

obtained. An analysis and interpretation of the physical consequences

of the formal solution is presented in Section III. Finally the results

are summarized in Section IV.
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I. FORMULATION

Let j~0(~~~, t) — ~
(
~

) exp {—iwt } and t~~(x, t) — T
jj

(~~) exp (—iwt } denote

the time harmonic particle displacement vector and stress tensor where ~ > 0

is the frequency, t is time, and ~ — (x1, x2, x3) is a position vector in

Cartesian coordinates. Here, the subscripts i, j take on the values 1, 2, 3.

Hereafter, the complex quantities M. and will be referred to as the particle

displacement and stress tensor. The equations of motion, with body forces

neglected, for small amplitude time harmonic waves in a homogeneous and isotropic
4

linearly viscoelastic material are

~8u + (A + ~j)V(V • u) + pw2u — 0 (1)

where A (.~) and ~i (w) are specified complex valued material properties which

reduce to the Lamé constants in the limiting elastic case. The constant

density is denoted by p, and the gradient and Laplace operators are denoted

by V and t~. The constitutive relations are

• V•
~i + ~~~~~~~~ + ~u~/ax~) (2)

where is the Kronecker delta and i, j — 1, 2, 3.

We consider two—dimensional motions of the form ~ — ~a(x y, 0) where

— x, x2 • y, x3 — z are the usual Cartesian coordinates . Since ~ is

independent of z, u3 is uncoupled f rom u1 and u2 in Eq. 1 and u3 satisfies

the z component of Eq. 1. The solution, of this equation describe shear

motions transverse to the x, y plane . They have been previously invssti~ated

for a restricted class of viscoelastic materials
5 and are not considered here.
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Only the ‘in plane” aotions described by the x and y component. of Eq. 1 are

studied. Hence, we take u3 • 0, u1 • u and u2 v in Eqs. 1 and 2.

in the following analysis, the subscript m • 1, 2 is used to indicate whica

medium the subscripted variable refers to, i.e., m — 1 implies y > 0 and m — 2

implies y < 0, as shown in Fig. 1. Th. subscript n • 1, 2 ii used to denote

di].atational and shear waves respectively, and the subscript £ — 1, 2 denotes

the case where a dilatational (t • 1) or a shear (I • 2) wave is incident at the

interface.

Eight potential functions, ~~~~ are defined such that, for £, m • 1, 2,

Uta ~~tm1
”
~~
’ +

— a.
~12

/ax , (3)

are the displacement components. The displacement vector obtained from Eq. 3

is a solution of Eq. 1 provided

~~tmn + k
2 • 0, 1, m, n • 1, 2, (4)

where

k s w/San an’

+ 2u
*

)/Pm ; ~~~ 
— IImI’Pm 

(5)

Hers, kem is the ‘complex wave number” for dilatational (n • 1) or shear (n — 2)

waves I.e medium a which may be expressed as t

S
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k (w/C )(l + i tan “mn~ ’ 
(6)

tan 2fl ~~—m S 2 IRS 2 , O s ~~ < i ~/2 ;mn an tmn an

(7)
C I s  sec ~an an an

for is, n — 1, 2. The complex quantities, S
~0

, are referred to as “comp lex

wave speeds” because of their analogy to the elastic wave speeds. It will be

shown that the real quantities, C , are least upper bounds for the dilatational

(n — 1) and shear (n • 2) wave speeds in medium in. The requirement that

O ~ < comes from the condition that plane waves do not grow in amplitude

as they propagate 1 .

An effort has been made to keep the notation consistant with that in

Ref. 1. However, in order to avoid confusion with the Kronecker delta, 12 is

used for the variable defined as 6 in the previous work. Also, we have

reserved • to denote an angle. Hence, the potential functions are here denoted

by •.

The normal stresses in the x and y directions, for medium a and incident

wav e t, are denoted by 0xtis and ayLa, and the corresponding shear stress is

denoted by t tm~ Thus, from Eqs. 2 and 3, for £, a • 1, 2,

0ztui — 2u + — A k~1 ta;’

0yta • 2I~~(a
2•1_ /ay

2 — a2•ta2/
thcdy) — A

m k~ 1 •~~~, (8)

+ a 2. /ay 2 — 32 &a2~~x
2)
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The boundary conditions at the interface, y — 0, are, for £ — 1, 2,

u~1 (x , 0) — ut2
(x , 0), v

~ 1 (x , 0) “ .‘ , 0)

t9)

O
yti

(X i 0) — O
y t2

(X
~ 
0), t

~ 1 (x , 0) — t
~ 2
(x, 0).

The total potential functions are defined, for t, n — 1, 2, by

t1n — 6tn ‘t + *t1n~ t2n 
— *t2n 

(10)

where 6tn is the Kronecker delta. The incident wave, ~~~ is a dilatational

wave if £ — 1 and a shear wave if £ — 2. The reflected and refracted waves

are denoted by *tinfl~ 
The potential functions for t, a, n — 1, 2 are assumed

to be of the form

— 

~
1t5ti”~ 

exp (ik
1~

(r
~
.;)}

(11)

~tmn — 
~~t

R
tan

Smn/~~ 
exp (tk (r

~~~~~
)}

where

!t~~~~~
sin O

~~
_
~~~

C05 O t ,  x~~~~x + 1y ,  
V

(12)
- m + 1

~~ ~~~ ~tmn + ~C Ca, r
~tmn, £~ ~ (—1)

Here, I., j  are unit vectors along the positive x and y axes . The angle , 0,’ is

the angle between the incident dilatational (t • 1) or shear (t — 2) ray r~

and 1. The angles 
~~~ 

are, in general, complex. If they are real , then they

are between and j  for a — 1 and between and —3 for a — 2 (and are given
by ~~~ — e tan). See Fig. 1.

I
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It may be shown that I~ is the displacement amplitude of the incident

wave, normal to its wavef rant, at the origin x — y — 0. Similarly , Rime Ii ~~

the displacement amplitude of the reflected or refracted wave, normal to its

wavef root, at the origin. Thus, Ri0, 
a, n — 1, 2, are the disp lacement (or

velocity) reflection and refraction coefficient. for £ — 1, 2.

Note that the incident wave is a plane wave in the usual sense, i.e., it

has constant amplitude across its wavefront. When is complex, it will be

shown that the reflected or refracted wave is a “general plane wave”, i.e., it

is attenuated across its wavef rant.

From Eqs. 3, 4, 11 and 12 it may be shown that

1k
1 ~~~ ~tm1 

1k 2 La 
cos 

~tm2

*9~•m1V
t 

cik 1 cos 
~tm1 ~

ik
~2 

sin

— _k
~ t (A m + 2ua sin2 Cia;) ~~m~~2

Cm sin

°ytm 
_k
~i

(A
m 
+ 2I

~m 
cos2 Um~~~2

Ca ath 2C
tm2

—c ~ k
2 sin 2~ —u k2 cos 2ç 

V

La a a a; La; a m2 £a2

— 
(13)

sin O~ — 6t2k12 Co. 82
) 

—

6~ + 6~2k1~ sin 82)

+ 6m; ‘t —6 11k~1 (A 1 + 2~1 sin
2 e~

) + 6L2u l142 ~~ 26
2 •1

+ 2p 1 cos
2 e 1) — 6t2u;k~2 

sin 262 j
6ti $a ik~i sin 2e 1~~ 6t2u ;k~2 ~~ 

2~2 
—

4 ‘V
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II. SOLUTION

The boundary conditions given by Eq. 9 require that all of the

ezponentials in Eq. 13 be equal on y — 0. Hence, we obtain the complex

Snell’s law, for I., a, n — 1, 2,

sin — S sin 8~ /S
1~ 

, (14)

where the complex wave speeds, S~~, are def ined by Eq. 5. Rearranging the

expressions resulting from the boundary conditions and combining the result

with Eq. 14, we obtain the linear set of equations

— , L — 1, 2, (15)

where

sin Co. Ct12 —sin cos Ct22

cos —sin Ct12 cos sin

— —p~ S11cos 4t;2 p 1S12
sin 2CL;2 p2S21cos 2C t22 o2S22sin 2Ct22 

(16)

Q~ S12 sin2~~ 11 
p 1S12cos 2ç~ ~~~~~~~ 

2Ct21 —p S cos 2C
S

11 S2 
2 22 £22

—sin81 cos02 Ri11 

V

coe01 sin82 Ri12 (17)
B; — p

1S11 cos 2C
112 ‘ 

—p 1S12sin 282 ‘ !~ 
—

915
2
2
510 20

1 
—p 1S~2cos 2e2 R~22

(V

9 — ; -
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If det ~l 0, then the reflection and refraction coefficients,

R
im0, 

are determined by inverting Eq. 15. In general, Rime 
is complex.

Hence, there is a phase shift between the incident wave and the reflected

and refracted waves in general. In order for the formal solution obtained

above to be unique , unique values for r
~me

, t,m ,n — 1,2, must be specif ied

(since the inversion of Eq. 14 yield. multivalued roots for the complex

angles , C Lan)• In the following section, the physics of the reflection and

ref lection phenomena will be studied, and the information presented there

will allow a unique inversion of Eq. 14.

4
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III. PHYSICAL INTERPRETATION OP THE SOLUTION

Let the complex angle , 
~R.mn’ be represented by

C — a  + 18 (18)tan tan tan

where and real numbers. Combining Eqs. 5, 6 , 14, and 18; noting

that sin ~ — sin a cosh B + i cos a sinh B ; and equatingtan tan tan tan tmn

the real and imaginary parts of the resulting expression, we obtain

sin a cosh 8 ., r cos Ainn tan tan tan , (19)

cos a sinh B — r sin A (20)tmn tan tan tan

where

cos c
~an

/cos (2~~ > 0, (21)

C sin e
~ 

/c 1~ 
> o , (22)

~~0 
—

~~~~~ . (23)
tan t an

Combining Eqs. 19 and 20 and using simple identities , we obtain

sinh2 8tan + sin2 a
~ 

— r 
, (24)

cosh2 8 — cos2 a — r 2 (25)
tan tan tan

sin a coshB sin A — Co. a sinh B cos A . (26)tan tan tan tan tan tan

11
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_ _ __ _ __ _  _ _ _ _ _ _ _ _ _ _- _ _V -
~ 

V V -V
~~1~~ •W

-V — —-V ~~~~~~~~~~~~ ~
- 

— ~_1.~tV~



Combining Eq. 24 with the square of Eq. 26 and noting that

COsh2Bt 
— Siflh2Btan — 1, we obtain a quadratic in siflh2 B

tan 
whose

solution for sinh2 8 > 0 istan—

sinh2 Bt 
I — 1 + [(1 — mn~

2 + 6~~ 8th2Atmn] 
‘~ (2 7)

Note that is real if and only if — 0 in Eq. 18. Thus, from

Eq. 27, necessary and sufficient conditions for to be a real, non—

zero angle are A = 0 and 0 c r < 1. In this case, ~ a — 0 istan tan — tan tan tmn
given by Eq. 14 or Eq. 19. Note that = 0 (0~= 0) is a sufficient

condition f or B — 0, and in this case a — 0 from Eq. 19. Hence,tan tan

if the incident wave is normal to the interface , all reflected and

refracted waves propagate in directions normal to the interface.

If Btan ~
i 0, then the proper sign for sinh — Isinh Bt I given

by Eq. 27 must be determined before the solution is complete. Since

� 0, Eq. 19 indicates that (note that 0 
~ 

12mn < ir/2, so—w/2 < ir/2)

O < a  ~~ir (28)
— tan

Eq. 20 then indicates only that cos aLma and 8Lma either have the same

or the opposite sign depending on the sign of 
~tma

• Thus , the form of

the information presented so far is not sufficient to determine the proper

sign for 8tan We shall obtain the necessary information by considering

the real properties of the reflection phenomena.

12 
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Combining Eqs. 11, 12, and 18 and simplifying, we obtain

i k r
~ 

— (iw/C
~~~

) 
~~ tmn 

+ ~ D
~~~

a
~~~

) (29)

where

c E C 
~Zmn , (30)

-½
[
1 + sinh2 B

tme
sec2

Q ]  , (31)

~tmn 
j sin + Jr cos , (32)

~tmn 
j sin (a

t + + jc cos(a
~ 

+ , (33)

0tmn a
~an — 

tmn , (34)

tan tmn — tan 12 tanh 8Lan , —w/2 < 
tmn ~ w/2 , (35)

tan — cot tanh 8Lmn , —iv/2 ‘
~ an 

< wf2 , (36 )

V 

Di ~ tinn 
[
tan2 ll cosh2Bt + sinh2 Bian

] 

½ (37)

In Eq. 29 , c is the real wave speed, p and a are real unit
imn tan -tan

vectors in the directions of propagation and damping, and Dime is the

total damping coefficient. From Eq. 30, is the ratio of the wave

speed to the material property Can given by Eq. 7, and from Eq. 31

0 ( c 1 Hence, the material properties Can are least upper bounds

— ~~~.
- 
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on the wave speeds. Note, from Eq. 31, that • 1 if and only

if B~ — 0. Thus, a necessary and sufficient condition for waves

to propagate with speeds specified entirely by material properties,

i.e. independent of the incident angle, is for to be real. Note

that this is always the case at normal incidence since ç — 0 in that
tan

case.

The propagation and damping unit vectors , and are represented

schematically in Figure 2 for m — 1. Note that they coincide if and

only if — 

~tan 
which occurs if and only if 8Lan — 0. Thus,

a necessary and sufficient condition for the surfaces of constant phase,

!Lmn 
•
~~~~ — constant, and surfaces of constant amplitude, a

~~m
• x — constant,

to be parallel is for C tan to be real. Otherwise, the waves are attenuated

in directions other than the direction of propagation.

The real reflection or refraction angle, eLan , will now be

determined. Combining Eqs. 34, 35 , and 31 to obtain an expression for

sin ~~~ , and then comparing the result with the sum of Eq. 19 and

tan times Eq. 23 , we find

sin O ~ y ~~0. (38)tan tan tan

This result, which explicitly determines the reflection and refraction

angles once ii found from Eqs. 31 and 27, is precisely the same

form obtaine d for the reflection of plane wave s from free and rigid

I :~ boundaries ’. Note that 0 ~ C~~~ ~
‘Lan ~ 1 since the analysis has required

that 6 be real.tan
14
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The attenuation vector, 
~~me’ may be decomposed into components

along and normal to PLan by noting that atan ~~tmn ~Lma~ ~tan +

~tme~ ~tmn 
where 

~tinn 
— x and k is a unit vector in the

x — z direction. Hence, the unit vector tangent to the reflected

or refrac ted wave front, positive when pointing away from the interface,

is

time — —i cos 0tmn + je sin 0 tmn

Hence, Eq. 29 may be transformed to

ik ( r tan . x) — (iii/c
~~0) [(1 + ~ ~~~ 

tan12 ~ ~?Zmn 
. x)

sec2 12mn sinh Bi COOh 8tan (tj~me . x)] (40)

Hence, the longitudional damping coefficient (in the direction

of

d (u/C ) ~ tan ~l , (41)Lan an Lan inn

and the transverse damping coefficient (in the direction of time) is

Tt E — (w/C ) 
~tme sec2 sinh 8tmn cosh B~ . (42) 

V

Thus, the wave is tran.versely~ damped away f rom the interface if 8tan~ 
0

and toward the interface if ‘ 0. Note also that Time 
0 if and

only if 8tan — 0. Thus , the significance of the sign of sinh 8
~.me ~

ow

becomes clearer.

15
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Multiplying Eq. 19 by tan 
~
2an’ adding the result to Eq. 20,

simplifying and noting Eq.. 34 , 35 , 38, 31 and 42 , we obtain

wy [~ 2 tan 12 — tan 12 ] — C T con e (43)tan tan an an Lan tan

We note that Eq. 43 is consistent with the previous findings on necessary

and sufficient conditions f~ r 8tme 0 (an d, therefore, Time — 0) in that

those conditions are included in the set of conditions for which the left

side of Eq. 43 vanishes. From the physical situation, lO tmel ~ w/2. Thus

Eq. 28 indicates that 0 
~ 
8tan ~ w/2 so that con 0tmn is non—negative.

Hence, the sigusof Ti and 8tma ~ Oa~e determined by the left side of

Eq. 43 provided both sides are not identically zero. Excluding, for the

moment, interface waves — ir/2) and the case of no t ransverse damping,

sign Ti — sign 
~~~~~~~~~~~~~~~ 

— sign 
~~Lmn tan 

— tan

if 8tan ~ 0, 0tmn ~ n/2. (44)

Note that if 12 (1 , then T < 0 since F~ C 1 and the reflected
it an tan tan —

or transmitted wave is transversely damped toward the interface.

We now determine necessary and sufficient conditions for interface

waves to exist, i.e., — w/2. To facilitate the argument, we consider

three cases : a) 
~ ~~~ 

b) 12 ~ 0, and c) — — 0.
If 12 12 , then from Eq. 28 6 ~ 0. Furthermore, we havean it tan

already shown only normally reflected and transmitted waves exist

if — 0 (normal incidence). Hence , from Eq. 43 , a necessary and

16
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sufficient condition for 0 • ~/2 (if 12 ~ 12 ) ~stan mn~~~~~ -

E~ tan 12 = tan 12 .tan mn

Note that this ondit ion can not be satisfied it either 12 — 0 orInn

51 , 0, or if 12mn (since ~ 
1). Thus , no interface wave can exist

In these cases.. Hence , if ~ U and 51 ~ U and it then from

Eq. 38, an interface wave exists if and only if

= tan 51 /tan (1 < 1, 51 Il . (46)
inn inn ~t —  fin it

Note that i t  an interface wave occurs , then It occurs for a discrete incident

angle e~.

If 51 51 ~ 0, then A — 0 and we have previously found that
inn Lan

8&mn 0 if and only if — < 1. (See Eq. 28.) Thus, from Eq. 31,

— 1 in this case . Hence , from Eq. 38, an interface wave is possible

if and only if y~ > 1. In fact , from Eqs . 43 and 38 , a necessary and

sutUcient condition for 0 — w/2 (if 51 12 ~ 0) istan inn it

‘
~tmn 

— 1~ (47)

T~ make this clear , note that the left side of Eq. 43, In this case reduces

•V () (1
~~4an

) tan 12mn’ which can vanish if and only if — 1. Thus,

from Eq. 38, — n/ ?  if and only if — 1. Note that this implies

that an interface wave can exist for only a distinct incident angle.

If — — 0 , then ~ 0 if ‘ 1 as in the previous case.

Further , the left side of Eq 43 is identically zero Thus , if 8
tme ~ ~~ ‘

17
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then 0tme — w/2. Note that — 1 for y~~~ < 1. Thus, from Eq. 38,

9Lmn < w /2 for 
~
‘Lme C 1, and 0Lmn — ~/2 if 

~~~ 
1. Hence, 0Lmn —

for > 1. For the reciprocal argument, note that if — n/2 , then

from eq. 38, ~ 
— 1. Then since 0 E < 1, it is clear thattan tan tan —

> 1. Thus, a necessary and sufficient condition for ~~~ —

(if 12mn ~~~ 
— 0) is

~tmn 
> 1. (48)

This implies that an interface wave exists for any incident angle such that

sin 0~ > C 1 / C .

It remains to specify the proper sign for T and B when e —~I2.Lan tan tan

In all cases where interface waves exist , we choose

Time ~ 0, B~ 
< 0 for 0tmn 

— ~/2 , (49)

so that the solution is bounded for increasing y. This choice also provides

consistency with the limiting elastic case. Note that if — 511k ~ 0~

then from Eqs. 47 and 28, 8tan — 0.

18
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IV. DISCUSSION

From the preceding analysis , we can make several general observations

about the reflec tion and transmission phenomena at the interface. In general,

the reflected and transmitted waves are general plane waves (both longitudinal

and transverse damping) whose wave speeds and attenuation coefficients are

functions of the incident angle as well as material properties . The least

uppe r bound for the wave speed is the material p roperty Can where a , n — 1,2.

In general, interface va”es exist for distinct angles of incidence if they

are possible at all. In general , there is a phase shift between the incident

and reflected or transmitted wave.

The excep tions to the above general statements center around special

cases for the complex wave speeds Sme• If ImSan — laS it , then the reflec ted

or transmitted wave , •tan’ is a p lane wave in the usual sense (constant

amplitude across the wave front) unless it is an interface wave , in which

case it becomes a general plane wave. If ImSan — ImS~~ ~ 0, an interface

wave can exist only for dis tinct incident angles ; but if laSme — ImS1~ — 0,

then interface waves exist for any incident angle greater than some critical

angle. Also , the only case where the wave speed is independent of the

incident angle is when ImSan — ImS 1~
.

Mother special case of some interest is > In this case ,

no interface wave is possible . Also , it was shown that the reflected or

transmitted wave is attenuated across its front toward the interface in

this case . This result is contrary to the elastic case of internal reflection
V V ; . j V:

V .q ? V ~
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where the wave is attenuated away from the interface. For the reflected

wave s (m — 1), Lockett
2 

has suggested that when the incident wave is a

shear wave 
~ 

12in for most real materials . The transmitted wave

prcperties cannot be compared without specifying specific materials.

Hence , no such relationship between and 522n is generally applicable.

The results presented here are entirely consistent with those for

rigid and free boundaries in Reference 1. In generalities , these results

also agree with Lockett ’s results2. However , there is at least one point

where an inconsistency occurs. Lockett indicates that if interface waves

exist , they occur for inciden t angles greater than some critical angle.

I t  was shown here that , except for the above mentioned special cases ,

interface wave s occur for discrete incident angles , i.e., the reflected or

transmitted ray moves away from the interface if the incident angle is

increased beyond the critical angle.

Th. solution presented here includes all cases of homogeneous and

isotropic linearly viscoelasttc materials including the limiting elastic

case. Once the complex angle. C tme are determined , the results from

Section II can be applied to determine the field for a fixed frequency w.

if pulse p ropagation is of interest, then a Fourier synthesis may be used

to solve the transient problem.
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